Моделирование электростатического поля двух параллельных несоосных заряженных цилиндров Вариант В

© 2014, Alexey V. Voronin @ belsut.foxylab.com

Запускаем студенческую версию пакета *ELCUT*, щелкнув по пункту **Elcut Student** в меню *Пуск* или иконке программы на рабочем столе.

Закрываем открытую по умолчанию демонстрационную задачу (если она открыта) выбираем в пункте главного меню **Файл** команду Закрыть.

Моделирование электростатического поля двух заряженных цилиндров в пакете *ELCUT* состоит из следующих этапов:

- 1. Создание геометрической модели системы цилиндров
- 2. Задание физических свойств элементов модели
- 3. Построение расчетной сетки и расчет модели
- 4. Анализ результатов моделирования.

Исходные данные и результаты предварительного расчета.

В рассматриваемом примере заданы:

 R_1 = 12 cm, R_2 = 20 cm, D = 6 cm , ℓ = 10 m, ϵ_r = 4.

Предварительно рассчитаны: h_1 = 18,3 см, h_2 = 24,3 см, ϕ_1 = 11613 В, ϕ_2 = 7613 В, U = 4000 В.

Создаём новую задачу: выбираем в пункте главного меню Файл команду Создать задачу.

a.						
🗄 Файл	Правка	Вид	Сервис	Окн	а	?
: 🗋 C	оздать зад	Ctrl	+N	0	Q	
े 💆 ०	ткрыть за	Ctrl	+0			
6						

Вводим Имя файла задачи (в примере Cylinders B) и указываем папку для хранения файлов задачи (Создать в папке), нажимаем кнопку Далее. Выбираем Тип задачи

Электростатическое поле, меняем Единицы длины на Сантиметры, а Расчет на Прецизионный. Длина модели по оси z L_z указывается равной длине цилиндров (в примере 1000 см (ℓ), берется из исходных данных). Затем нажимаем кнопку Готово.

Создание задачи	Создание задачи 🗙
Введите имя и расположение новой задачи, или выберите нужную папку, пользуясь кнопкой Обзор.	Выберите тип и другие параметры новой задачи. Можете также изменить имена файлов, в которых будут сохранены геометрическая модель и физические свойства.
Имя файла задачи: Сylinders В Создать в папке: D:\Преподавание\TOЭ III часть\РГР\РГР 6.1\ELCUT B\	Тип задачи: Электростатическое поле Единицы длины Класс модели Координаты Плоская Ч
Использовать существующую задачу как образец Сделать новую задачу как копию образца Выберите задачу -	Р <u>а</u> счет Прецизионный ✓ Файлы еометрия: Cylinders B.mod Cgoйства: Cylinders B.des Справочник: епь:
< Назад Далее > Отмена Справка	< <u>Н</u> азад Готово Отмена Справка

Elcut - [Cylinders A.mod]										
Показать всё (Ctrl+0) выбор масштаба для показа модели целиком										
💽 🔍 🔍 🛃 👯 🐝 🗠 💿	🖳 🍳 🍳 🕌 🐺 🗱 🔁 💿									

Нажимаем на кнопку Показать Всё на панели инструментов.

На экране отображается рабочая область для создания модели:

Щелкаем правой кнопкой мышки в рабочей области, выбираем команду **Добавить фигуру** в появившемся контекстном меню.

Отменить	Ctrl+Z
Вернуть	Ctrl+Y
Вырезать	Ctrl+X
Копировать	Ctrl+C
Вставить	Ctrl+V
Дублировать выделенное	
Передвинуть выделенное	
Копировать видимую картинку	
Экспорт картинки	
Выделить всё	Ctrl+A
Снять выделение	Ctrl+D
Вставка вершин/ребер	Ins
Удалить выделенное	
Сетка привязки	
Построить сетку	,
Удалить сетку	•
Свойства	Alt+Enter
Добавить фигуру	Ctrl+Alt+S
Импорт из SolidWorks	Ctrl+∆lt+W

Выбираем Фигура Круг, указываем диаметр первого цилиндра (расположенного внутри второго) d = 24 см (удвоенный радиус цилиндра R_1 , взятый из исходных данных задачи) и координаты его центра x = -18.3 см (- h_1 из предварительного расчета), y = 0 см. Нажимаем кнопку **Добавить**.

После добавления первого цилиндра не закрываем окно *Добавить фигуру*, а добавляем второй цилиндр (расположенный снару), указывая диаметр *d* = **40** см (удвоенный радиус *R*₂) и координаты центра *x* = -**24.3** см (- *h*₂ из предварительного расчета), *y* = **0** см и нажимая кнопку **Добавить**.

Добавить фигуру 🦻	×
<u>Ф</u> игура: Круг	~
Схема	
Размер <u>d</u> = 40	
Позиция x = -24.3 y = 0	
<u>У</u> гол = 0	
<u>Д</u> обавить Закрыть	

Затем задаем размеры области моделирования:

указываем Фигура Прямоугольник и размеры — ширина и высота, равные 2,5 $\cdot R_{max}$, где R_{max} - радиус большего цилиндра (в данном случае 2,5 $\cdot 20 = 50$),

w = 50 см, h = 50 см,

координаты центра x = - h_{max} , где h_{max} - расстояние от центра внешнего цилиндра до линии нулевого потенциала(соответствует центру внешнего цилиндра, в данном случае x = -24.3 см), y = 0 см. а потом нажимаем кнопку **Добавить,** а затем кнопку **Закрыть**.

Нажимаем на кнопку Показать Всё на панели инструментов. На экране отображается рабочая область с геометрическими моделями цилиндров.

Правой кнопкой мышки щелкаем по диэлектрику между цилиндрами (при этом он выделяется красным цветом), выбираем команду **Свойства** в появившемся контекстном меню.

Задаем Метка - Диэлектрик, нажимаем кнопку ОК.

Свойства выделенных объектов	x
Блок Статистика	
Метка Диэлектрик У Ваг дискретизации Э Автоматический Ручной: У	
Площадь S = 804.248 см ²]
Сетка конечных элементов Нет сетки	
ОК Отмена Справка	

Слева в списке *Метки блоков* появляется **Диэлектрик** со знаком вопроса, так как мы не задали его физические свойства.

Делаем двойной щелчок мышкой внутри меньшего цилиндра и снаружи большего цилиндра (они при этом выделяются красным цветом) и выбираем оба раза из списка *Метка* - **Диэлектрик** и нажимаем кнопку **ОК.**

Своиства выделенных объектов								
Метка (нет) (нет) Дизлектрик Глощадь S = 1243.36 см ²								
Сетка конечных элементов Нет сетки								
ОК Отмена Справка								

В списке *Метки блоков* делаем двойной щелчок мышкой по **Диэлектрик** и задаем относительная **Диэлектрическая проницаемость** $\varepsilon_x = 4$ и $\varepsilon_y = 4$ (оба значения одинаковы и берутся из исходных данных задачи (ε_r). Нажимаем кнопку **ОК.**

Свойства метки блока - Диэлектрик								
Общие								
- Диэле	жтрическая проницае	мость	Координаты					
ε <u>x</u> =	ε _{<u>к</u>} = 4							
= y3	4	О Абсолютная	О Полярные					
A	изотропный диэлектр	ик						
Плотн	ость электрического	заряда						
ρ=	0		Кл/м ³) f					
	Г	21						
		ОК Отме	на Справк	а				

У **Диэлектрик** в списке исчез знак вопроса, так как мы задали его физические свойства.

Делаем двойной щелчок мышкой по верхней полуокружности первого цилиндра (в данном примере это внутренний цилиндр) и задаем *Метка* - **Первый цилиндр**, нажимаем кнопку **ОК**.

	Свойства выделенных объектов 🛛 🗙
	Ребро Статистика
	Метка Первый цилиндр V Задан:
	Дуга окружности Радиус: 12 см x = -18.3 см Угол: 180° y = 0 см
<u> </u>	Начальная точка x = -6.3 см y = 0 см X = -30.3 см y = 0 см
	ОК Отмена Справка

Затем делаем двойной щелчок мышкой по нижней полуокружности первого цилиндра и выбираем **Первый цилиндр** из выпадающего списка *Метка*, нажимаем кнопку **ОК**.

Делаем двойной щелчок мышкой по верхней полуокружности второго цилиндра и задаем *Метка -* Второй цилиндр, нажимаем кнопку **ОК**.

Затем делаем двойной щелчок мышкой по нижней полуокружности второго цилиндра и выбираем **Второй цилиндр** из выпадающего списка *Метка*, нажимаем кнопку **ОК**.

Слева в списке *Метки ребер* появляются **Первый цилиндр** и **Второй цилиндр** со знаком вопроса, так как мы не задали граничные условия на этих цилиндрах.

Слева в списке *Метки ребер* делаем двойной щелчок по **Первый цилиндр**, ставим галочку на *Потенциал* и задаем рассчитанный вручную потенциал первого цилиндра (ϕ_1) **11613** В, щелкаем по кнопке **ОК**. Потом делаем двойной щелчок по **Второй цилиндр**, ставим галочку на *Потенциал* и задаем рассчитанный вручную потенциал второго цилиндра (ϕ_2) **7613** В, щелкаем по кнопке **ОК**.

Свойства метки ребра - Первый цилиндр 🛛 🗙	Свойства метки ребра - Второй цилиндр 🛛 🔀
Общие Г_Потенциал: U = U _o U _o = 11613 (В)	Общие Потенциал: U = U _o U _o = 7613 (В)
Г Поверхностный <u>з</u> аряд: D _n = σ (ΔD _n = σ) σ = 0 (Кл/м ²)	Поверхностный <u>з</u> аряд: D _n = σ (ΔD _n = σ) σ = 0 (Кл/м ²)
Изолированный проводник (равный неизвестный потенциал)	Изолированный проводник (равный неизвестный потенциал)
 ☐ <u>Ч</u>етная периодичность: U₁ = U₂ ☐ Н<u>е</u>четная периодичность: U₁ = · U₂ 	 ☐ <u>Ч</u>етная периодичность: U₁ = U₂ ☐ Н<u>е</u>четная периодичность: U₁ = - U₂
ОК Отмена Справка	ОК Отмена Справка

В списке метки ребер у **Первый цилиндр и Второй цилиндр** исчезли знаки вопроса, так как мы задали на них граничные условия — значения потенциалов.

Щелкаем по кнопке Построение сетки на панели инструментов.

							u		L.C.	.		ac.				0	a) -				
		0		ОС)ст	тр	00 ені	er ve	IN ce	е (ce 1 K	тк он	И eч	ны	хэ	ле	ме	HT	0B			
⊰. t	**	θ	θ.	ð.		6		0													
																					[
	-							1	1					-	1	1	1	1	1	1	1.

На экране отображается рабочая область, покрытая сеткой из конечных элементов - треугольников.

Делаем двойной щелчок по ближайшей точке большего цилиндра (в данном случае второго цилиндра).

Выбираем пункт **Задан** для *Шаг дискретизации* и вводим рассчитанное только что значение **0.8** см.

Свойства выделенных объектов								
Вершина Статистика	Шаг дискретизации							
(нет) 🗸	 О Автоматический (●) Задан: 0.8 							
Декартовы координаты	Полярные координаты							
х = -6.3 см	г = 6.3 см							
у = 0 см	φ = 180°							
ОК	Отмена Справка							

Делаем двойной щелчок по ближайшей точке меньшего цилиндра (в данном случае второго цилиндра, находящегося справа) и вводим такое же значение шага – **0.8** см.

$$\frac{2}{2,5} = 0,8$$

Делаем двойной щелчок по каждой вершине прямоугольника и вводим увеличенное в 12,5 раз ранее вводимое значение шага **10** см.

$$12,5 \cdot 0,8 = 10$$

Свойства выделенных объектов				
Вершина Статистика				
Метка (нет) У	Шаг дискретизации О Автоматический (© Задан: 10 У			
Декартовы координаты x = -49.3 см y = 25 см	Полярные координаты r = 55.2765 см φ = 153.11°			
ОК	Отмена Справка			

На экране отображается геометрическая модель системы цилиндров с сеткой конечных элементов, густой в областях наиболее сильного электрического поля и разреженной в областях слабого поля.

Щелкаем по кнопке **Решить**. Подтверждаем сохранение измененных файлов, нажимая кнопку **Да**. Соглашаемся на просмотр результатов расчета, нажав кнопку **Да**.

На экране отображается рассчитанная картина поля в виде эквипотенциальных линий.

Правой кнопкой щелкаем по картинке и выбираем команду **Свойства картины поля**.

Ставим галочку *Изолинии потенциала* и задаем шаг потенциала, заданный при построении картины поля вручную ($\Delta \varphi \cong \frac{U}{4} = \frac{4000}{4} = 1000$), *Масштаб* – **1000** В. Ставим галочку *Векторы* и выбираем пункт *Напряженность Е*. Ставим галочку *Цветная карта* и выбираем пункт *Напряженность*. Нажимаем кнопку **ОК**.

	Свойства картины	поля	>
Изолинии потенциала	Масштаб: 1000	(B)	OK
			Отмена
Векторы:	Масштаб: 7.е-6		Справка
 Напряженность Е Смещение D 	Шаг сетки: 5	(см)	Совет
✔ Цветная карта:	Напряженность Е		
О Потенциал	Напряженность Е _х	Число цветов: 20	
Градиент напряженности	Напряженность Е _у	Максимум: 207000	В/м
 Смещение Прочие величины 		Минимум: 0	В/м
Конечные элементы			

На экране отображается цветная картина поля, в которой цвет кодирует силу электрического поля в данной точке — от синего (наиболее слабого) до красного (наиболее сильного). Сплошные линии — эквипотенциальные линии. Вектора указывают направление силовых линий — от положительно заряженного цилиндра (в данном случае внутреннего) к отрицательному (в данном случае внешнему).

Для расшифровки значений цветов в картине поля выведем цветовую шкалу. Для этого щелкаем правой кнопкой мышки по картине поля и в появившемся контекстном меню выбираем команду **Цветовая шкала**. После этого справа от картины поля появляется цветовая шкала, где оттенкам цветов сопоставлены уровни напряженности поля.

Для копирования картины поля в буфер обмена или сохранения в виде графического файла щелкаем правой кнопкой мышки по картине поля и выбираем команду Копировать картинку или Экспорт картинки.

Интегральные значения...

Копировать картинку

Экспорт картинки...

Черно-белое изображение

Правой кнопкой щелкаем по картине поля и выбираем команду **Ввод линий контура** из появившегося контекстного меню.

Задаем координату ближайшей ко второму цилиндру точки первого цилиндра (меньшего) x = -6.3 см (вычисляется как $-(h_1 - R_1) =$ -(18,3 - 12) = -6,3). Щелкаем

Добавление линий <u>x</u> = -6.3 (см) Начальная точка

(CM)

🗸 (град)

Щелкаем по кнопке **Закрыть**. На картине поля отображается розовая линия, проведенная между ближайшими точками цилиндров со стрелкой, направленной от первого цилиндра ко второму.

Удалить линию

Сменить направление

Закрыть

Справка

Черно-белое изображение Обновить F5 Ввод линий контура... Добавить (Линия/Ребро/Блок)

Задаем координату ближайшей к первому цилиндру точки второго цилиндра (большего)

x = -**4.3** см (вычисляется как –($h_2 - R_2$) = –(24,3 – 20) = – 4,3). Щелкаем по кнопке **Добавить линию**.

Добавление линий 🛛 🗙				
<u>×</u> =	-4.3 (см)	(см)	Добавить линию Удалить линию	
¥ = Уго	ұ = 0 Угол дуги:		Сменить направление	
Прямая линия (0°) 🗸 🗸	(град)	Справка		

по кнопке Начальная точка.

¥ = 0

Угол дуги:

Прямая линия (0°)

Щелкаем правой кнопкой мышки по картине поля и выбираем команду **График**.

В появившемся окне справа выбираем пункт Напряженность. На экране отображается график изменения напряженности поля между цилиндрами.

Затем справа выбираем пункт Напряжение. На экране отображается график изменения потенциала поля между цилиндрами.

٥.

Для копирования графика в буфер обмена или сохранения в виде графического файла щелкаем правой кнопкой мышки по графику и выбираем команду Копировать картинку или Экспорт картинки.

